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BOUT++ Application:  
using SUNDIALS (LLNL) and PETSc (ANL) 

Implementation: 
•  solver_type=cvode/ida/petsc 
•  PETSc variant has several options: 

•  PETSc calls PETSc/TS or  
                          SUNDIALS/CVODE 

   - SUNDIALS/CVODE can call PETSc/PC 
See upcoming presentations:  

 C. Woodward (SUNDIALS) and P. Narayan (performance analysis) 

Current emphasis: 
•  Implicit time integration  
•  Newton-Krylov nonlinear solves 
•  Jacobian–free variant 
•  Preconditioner options:  

•  algebraic approaches using sparse finite 
difference Jacobian evaluation via coloring  

•  or user-provided preconditioners 

2 



Newton 
nonlinear solver 

Newton’s Method  
Based on multivariate Taylor expansion: 
   

  
               + higher order terms 

! 

F(ul+1) = F(ul ) + F '(ul )(ul+1 " ul )

! 

F '(ul"1) #ul = "F(ul"1)

! 

ul = ul"1 + # $ul

•  Can achieve quadratic convergence when sufficiently close to solution 
•  Can extend radius of convergence with line search, trust region, or 

continuation methods (e.g., pseudo-transient continuation, mesh sequencing) 
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Krylov 
accelerator 

Krylov Methods 
•  Projection methods for solving linear 

systems, Ax=b, using the Krylov 
subspace     

•  Require A only in the form of 
matrix-vector products 

•  Popular methods include CG, 
GMRES, TFQMR, BiCGStab, etc. 

•  In practice, preconditioning typically 
needed for good performance 

! 

K j = span (r0, Ar0, Ar0
2,...,Ar0

j"1)
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•  Cluster eigenvalues of the iteration matrix (and thus speed 
convergence of Krylov methods) by transforming Ax=b into 
an equivalent form: 

                                      or       
    where the inverse action of B approximates that of A, but at a 

smaller cost 
•  How to choose B  so that we achieve efficiency and 

scalability?   Common strategies include: 
–  Lagging the evaluation of B 
–  Lower order and/or sparse approximations of B 
–  Parallel techniques exploiting memory hierarchy, e.g., additive 

Schwarz 
–  Multi-level methods  
–  User-defined custom physics-based approaches 

! 

B"1Ax = B"1b (AB)"1(Bx) = b

Challenges in Preconditioning 
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•  Newton-Krylov methods require derivatives in the form of 
Jacobian-vector products, F’(u)v 

•  Also typically require F’(u) (or a “cheaper” approximation) 
for use in preconditioning 

•  Options: Can provide either F’(u) or F’(u)v  via 
–  Analytic code (written by application developer) 
–  Sparse finite difference approximation (FD) 
–  Automatic differentiation (AD), see                      
      www.autodiff.org  

Solve approximately 
using a preconditioned 
Krylov method 

Can be provided 
by libraries 

The Need for Derivatives 

! 

F '(ul"1) #ul = "F(ul"1)
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Matrix-free Jacobian-Vector Products 
•  Approaches 

–  Finite differences (FD) 
•  F’(x) v = [ F(x+hv) - F(x)] / h 
•  costs approximately 1 function evaluation 
•  challenges in computing the differencing parameter, h; must balance truncation and 

round-off errors 
–  Automatic differentiation (AD) 

•  costs approx 2 function evaluations, no difficulties in parameter estimation 
•  e.g., ADIFOR & ADIC 

•  Advantages 
–  Newton-like convergence without the cost of computing and storing the true 

Jacobian 
–  In practice, still typically perform preconditioning 

•  Reference 
–  D.A. Knoll and D.E. Keyes, Jacobian-free Newton-Krylov Methods: A 

Survey of Approaches and Applications, 2004, J. Comp. Phys., 193: 357-397 
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Example: ~BOUT/examples/drift-instability  
       on a MacAir with 2.13 GHz Inel core 2 Duo and 2GB MHz DDR3 memory 
mpiexec -n 4 ./2fluid solver_type=petsc -ts_type sundials -pc_type <pc> [options] 

  
  

 

 

Preconditioner NONE LU 
(MUMPS) 

ASM+ 
LU/ILU 

 BJACOBI
+ILU 

Internal time steps 1278 71  82/101  89 

Calls to rhs function  2409 94 102/137  108 

Linear solver setup  0  17 18/21  14 

Error test failures  3 5 5/4 3 

Nonlinear iterations 2408  93 101/136 107 

Nonlinear convergence failure  554 0 0/3 1 

Linear iterations 11591  77 165/348  298 

Linear convergence failures 2061  0 0/23 3 

Preconditioner evaluations 0 17 18/21 14 

Preconditioner solves 0 153  257/475  398 

Finite diff. Jacobian-vec product  11591  77  165/348 298 

Run time 4m 9s 2m 37s 2m 11s / 2m 19s 1m 30s 8 



PETSc –  
 Portable Extensible Toolkit for Scientific computation 

 

•  High-performance software for the scalable (parallel) solution 
of scientific applications 

•  PETSc History 
•  Begun in 1991 
•  Over 20,000 downloads since 1995 (version 2) 
•  Currently about 400 downloads per month 

•  PETSc Funding and Support 
•  primarily Department of Energy 
•  National Science Foundation 
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Portable Extensible Toolkit for Scientific computation  

•  Portable to any parallel system supporting MPI 
•  Tightly coupled systems 

•  Cray XT5, SGI Origin, IBM SP, HP 9000,… 

•  Loosely coupled systems 
•  PCs running Linux or Windows 

•  Free for everyone, including industrial users. 
•  Download from www.mcs.anl.gov/petsc 
•  Extensive documentation 
•  Hundreds of tutorial-style examples 
•  Support via email: petsc-maint@mcs.anl.gov 
•  Usable from Fortran90, C, C++, Python 
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Computation and Communication Kernels"
MPI, MPI-IO, BLAS, LAPACK"

Profiling Interface"

Application Codes!

Matrices, Vectors, Indices" Grid"
Management"

Linear Solvers"
Preconditioners + Krylov Methods"

Nonlinear Solvers"

ODE Integrators" Visualization"

Interface 

Portable Extensible Toolkit for Scientific computation  Level of  
Abstraction 
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Portable Extensible Toolkit for Scientific computation  

•  Parallel vector/array operations 
•  Numerous (parallel) sparse matrix formats 
•  Numerous linear solvers 
•  Nonlinear solvers 
•  ODE integrators 
•  Parallel grid/data management 
•  Provides common interface for  

 SUNDIALS/CVODE, hypre, SuperLU, MUMPS,… 
•  Allows switching of virtually all solvers at runtime 
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Portable Extensible Toolkit for Scientific computation  
 

Interfaced Packages: 
 

•  LU, Cholesky, ILU, ICC 
  SuperLU/SuperLU_DIST, MATLAB, PLAPACK, UMFPACK, MUMPS 

•  Algebraic multigrid 
 BoomerAMG (part of hypre), ML (part of Trilinos) 

•  Parititioning: Parmetis, Chaco, Jostle, Party, Scotch 
•  ODE integrators: Sundials/CVODE 
•  Eigenvalue solvers: BLOPEX 
•  FFTW 
•  SPRN 
•  … 

Child Packages of PETSc:  Have PETSc’s style of programming 
 

•  SLEPc: scalable eigenvalue/eigenvector solver packages 
•  TAO: scalable numerical optimization algorithms 
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Portable Extensible Toolkit for Scientific computation 
 
Solvers, (parallel) debugging aids, low-overhead profiling 

•  It is not possible to select the most effective solver a priori 
–  What will deliver best/competitive performance for a given physics, 

problem size, discretization, and architecture? 
 

•  PETSc was developed as a platform for experimentation 
–  models, discretization, algorithms, solvers 
–  algebra of composition so new solvers can be created at runtime 
 

•  Important to keep solvers decoupled from physics, 
discretization and processor partitioning because we also 
experiment with those 
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Portable Extensible Toolkit for Scientific computation  
Who Uses PETSc? 
•  Computational Scientists 

–  PyLith (TECTON), Underworld, Columbia group, PFLOTRAN, etc. 
 

•  Algorithm Developers 
–  Iterative methods and preconditioning researchers 
 

•  Package Developers 
–  SLEPc, TAO, MagPar, StGermain, Dealll, PETSc-FEM 
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Portable Extensible Toolkit for Scientific computation  
	

Applications of PETSc:  (see more at www.mcs.anl.gov) 
	



	

• 	

Nano-simulations 	


	

• 	

Biology/Medical	


	

• 	

Cardiology	


	

• 	

Imaging and Surgery	


	

• 	

Fusion 	


	

• 	

Geosciences 	


	

• 	

Environmental/Subsurface Flow 	


	

• 	

Computational Fluid Dynamics 	


	

• 	

Wave propagation and the Helmholz equation 	


	

• 	

Optimization	


	

• 	

Software engineering 	


	

• 	

Algorithm analysis and design	
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What Can We Handle? 
•  PETSc has run implicit problems with over 500 billion unknowns 

•  PFLOTRAN (flow in porous media) 
•  UNIC (nuclear energy) on BG/P and XT5 

•  PETSc has run on over 290,000 cores efficiently 
•  UNIC on IBM BG/P Intrepid at ANL 
•  PFLOTRAN on the Cray XT5 Jaguar at ORNL 
 

•  PETSc applications have run at 22 Teraflops 
•  PFLOTRAN 
•  UNIC 

•  PETSc also runs on your laptop 
 
 
 



Outline 

•  Overview of PETSc user interface: 
– Linear solvers: KSP 
– Nonlinear solvers: SNES 
– ODE solvers: TS 
– Profiling and debugging  
 

•  What’s New in PETSc  
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The PETSc Programming Model 
•  Distributed memory, “shared-nothing” 

• Requires only a standard compiler  
• Access to data on remote machines through MPI 
 

•  Hide within objects the details of the 
communication 

 

•  User orchestrates communication at a higher 
abstract level than direct MPI calls 
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Getting Started 
   PetscInitialize();  

 ObjCreate(MPI_comm,&obj); 
 ObjSetType(obj, ); 
 ObjSetFromOptions(obj, ); 

 
 ObjSolve(obj, ); 
 ObjGetxxx(obj, ); 

 
 ObjDestroy(obj); 

    PetscFinalize(); 
20 



Compressed 
Sparse Row 

(AIJ) 

Blocked Compressed 
Sparse Row 

(BAIJ) 

Block 
Diagonal 
(BDIAG) 

Dense Others 

Indices Block Indices Stride Others 
Index Sets (IS) 

Vectors (Vec) 

Line Search Trust Region 

Newton-based Methods 
Others 

Nonlinear Solvers (SNES) 

Additive 
Schwartz 

Block 
Jacobi Shell ILU, LU MG Field Split Others 

Preconditioners (PC) 

Euler,  
RK, SSP 

Theta,  
Alpha, 

GL  
Pseudo Time 

Stepping Others 

Time Steppers (TS) 

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Others 

Krylov Subspace Methods (KSP) 

Matrices (Mat) 

PETSc Numerical Components 

Distributed Arrays (DA) 

Matrix-free 
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PETSc 

Application 
Initialization Evaluation of A and b Post- 

Processing 

Solve 
Ax = b PC 

Linear Solvers (KSP) 

PETSc code User code 

Linear Solver Interface: KSP 
Main Routine 
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•  -ksp_type  [cg,gmres,bcgs,tfqmr,…] 
•  -pc_type  [lu,ilu,jacobi,sor,asm,…] 

 
•  -ksp_max_it  <max_iters> 
•  -ksp_gmres_restart  <restart> 
•  -pc_asm_overlap  <overlap> 
•  -pc_asm_type  [basic,restrict,interpolate,none] 
•  etc ... 

Setting Solver Options at Runtime 
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Recursion: Specifying Solvers for Schwarz  
Preconditioner Blocks 

•  Specify KSP solvers and options with “-sub” prefix, 
e.g., 
– Full or incomplete factorization 

-sub_pc_type lu 
-sub_pc_type ilu  -sub_pc_ilu_levels <levels> 

– Can also use inner Krylov iterations, e.g., 
-sub_ksp_type  gmres  -sub_ksp_rtol <rtol>  
-sub_ksp_max_it <maxit> 
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PETSc code User code 

Application 
Initialization 

Function 
Evaluation 

Jacobian 
Evaluation 

Post- 
Processing 

PC 
PETSc 

Main Routine 

Linear Solvers (KSP) 

Nonlinear Solvers (SNES) 

Timestepping Solvers (TS) 

Flow of Control for PETSc Solvers 
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Nonlinear Solver Interface: SNES 

Goal:  For problems arising from PDEs,  
support the general solution of  F(u) = 0  
 

User provides: 
– Code to evaluate F(u) 
– Code to evaluate Jacobian of F(u) (optional) 

•  or use sparse finite difference approximation 
•  or use automatic differentiation  

–  AD support: automated interface to ADIFOR and ADIC  
–  See www.mcs.anl.gov/autodiff 
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SNES: Basic Usage 

•  SNESCreate( )   - Create SNES context 
•  SNESSetFunction( )               - Set function eval. routine 
•  SNESSetJacobian( )    - Set Jacobian eval. routine  
•  SNESSetFromOptions( )        - Set runtime solver options    

                      for [SNES, KSP,PC] 
•  SNESSolve( )   - Run nonlinear solver 
•  SNESView( )              - View solver options   

           actually used at runtime  
          (alternative: -snes_view) 

•  SNESDestroy( )    - Destroy solver 
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ODE Solver Interface: TS 

ODE:   du/dt = F(u, t) or 
DAE:   G(u, du/dt, t) = F(u, t)  
 

User provides: 
– Code to evaluate function 
– Code to evaluate Jacobian (optional) 

•  or use sparse finite difference approximation 
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TS:  Basic Usage 
•  TSCreate( )    
•  TSSetProblemType() 
•  TSSetType() 
•  TSSetRHSFunction( ) and/or TSSetIFunction() 
•  TSSetRHSJacobian( ) or TSSetIJacobian() 
•  TSSetInitialTimeStep() 
•  TSSetDuration() 
•  TSSetFromOptions( )         

•  TSSolve( )    - Time stepping 
•  TSView()        
•  TSDestroy( )    

 29 



Uniform Access to All PETSc Solvers 
•  -ksp_type [cg, gmres, bcgs, tfqmr,…] 
•  -pc_type [lu, ilu, jacobi, sor, asm,…] 
•  -ksp_monitor_true_residual 
•  -ksp_converged_reason 

•  -snes_type [ls,…] 
•  -sles_ls <parameters> 
•  -snes_rtol <> -snes_atol <> -snes_stol <>  
•  -snes_monitor 
•  -snes_converged_reason 
 
•  -ts_type [sundials, theta, beuler…] 
•  -ts_theta_[option] 
•  -ts_dt <> -ts_max_time <>  
•  -ts_view  30 



Uniform Access to External Solvers 
mpiexec –n <np> ./petsc_program  [petsc options]   
•   -ts_type sundials 
•   -ts_sundials_type [adams, bdf] 
•   -ts_sundials_linear_tolerance <tolerance> 
•   -ts_sundials_monitor_steps 
•   -pc_type lu  
•   -pc_factor_mat_solver_package superlu_dist 
•   -mat_superlu_dist_[option]  

mpiexec –n <np> ./slepc_program  [slepc/petsc options]   
•   -eps_type [power, arnoldi, lapack, blopex,…] 
•   -eps_nev <> -eps_ncv <> -eps_ smallest_magnitute 
•   -st_type [shift, sinvert,…] –st_shift <> -st_ksp_type <> 
Reference: http://www.grycap.upv.es/slepc 
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PETSc Programming Aids 
•  Correctness Debugging 

– Automatic generation of tracebacks 

– Detecting memory corruption and leaks 

– Optional user-defined error handlers  
•  Performance Profiling 

–  Integrated profiling using -log_summary 
– Profiling by stages of an application 
– User-defined events  

32 



What’s New in PETSc? 
 

•  User-friendly APIs 
–  Python Bindings: petsc4py (Dalcin at CIMEC), Elefant (SML group at NICTA) 
–  PETSc-MATLAB 
 

•  Architecture–aware numerical algorithms and implementations 
–  Optimization for GPUs 
     http://www.mcs.anl.gov/petsc/petsc-as/features/gpus.html  
–  Hybrid MPI + pthreads 
     http://www.mcs.anl.gov/petsc/petsc-as/features/threads.html 
–  New algorithms and implementations that address memory scalability, 

efficient data accessing, e.g., iBiCGStab 

•  Variational inequality solvers  
–  SNESSetType(VI), SNESVISetVariableBounds(), … 
 

•  Mathematical solvers for multiphysics 
–  PCFieldSplit: support for physics-based preconditioning 
  

•  Time integration, DAE (operator spliting G(u, du/dt, t) = F(u, t))  
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PETSc Solvers for Multiphysics: 
 Exploiting physics knowledge in custom preconditioners … 

Leveraging knowledge of the different component physics in the system produces a 
better preconditioner. 

⎟⎟
⎠

⎞
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⎝
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−

−

1
4

1
1

A
A

additive componentwise 
preconditioner 

1
1
−A Additive Schwarz, 

LU on blocks 

1
4
−A Full LU solve 

via MUMPS 

Additive Schwarz 
provides scalability 

LU handles the 
neutrals only 

New PCFieldSplit simplifies multi-model algebraic system specification and solution.  
 
UEDGE runtime option: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
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⎝

⎛

nnn

n

aa

aa






1

111

base ordering (all 
variables per mesh point) 

physics-based 
reordering  

(for PC only) 

⎟⎟
⎠

⎞
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⎝

⎛
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21

AA
AA

components 
are separated 4A

3A Non-neutral to neutral  

Neutral terms only 

1A
2A

Non-neutral terms only 

Neutral to Non-neutral  
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Physics-based Preconditioning in UEDGE 
Scalable Preconditioners for Coupled

Plasma/Neutral Boundary Transport Simulations
Michael McCourt1,2, Tom Rognlien3, Lois Curfman McInnes2, Hong Zhang2

1Cornell University, 2Argonne National Laboratory, 3Lawrence Livermore National Laboratory
Introduction

We study simulations of the
edge region of a Tokamak
magnetic confinement fusion
reactor using UEDGE.

UEDGE is a 2D parallel edge
plasma application developed by T.
Rognlien et al. (LLNL)

UEDGE is one of the edge plasma transport
components in FACETS.

FACETS: Framework Application for Core-Edge Transport
Simulations based at Tech-X Corporation
PI: John Cary, https://www.facetsproject.org
FACETS goal: Strong coupling between core, edge and wall
Tokamak regions during simulation

Governing Physics
UEDGE uses a fluid transport model, conserving
particles, momentum and energy.

Simulations use ∆t ∈ [10−4, 10−3] sec,
appropriate for coupling to
time-dependant core models.

Coupled plasma/neutral simulations involve a
large range of spatial and temporal scales.

Several coupled variables interact in the
basic simulation:

Deuterium ion D+ temperature
Deuterium ion D+ density
Deuterium ion D+ parallel velocity
Electron e temperature
Neutral Deuterium D density

Strong nonlinearities can yield
ill-conditioned simulations
Impurities in the plasma arise from:

Plasma sputtering of material walls, and
Edge transport competing with ionization/recombination.
Solving each charge state (or bundle) creates large systems.

Algorithms
Implicit time discretization with nonlinear solves via
preconditioned Jacobian-free Newton-Krylov

The choice of preconditioner is vital to achieving scalability
PETSc is used to conduct the simulation in parallel
Early experiments showed limited scalability

The direct solver becomes overwhelmed by the cost of LU
factorization and associated communication.

Motivating a Physics Preconditioner
Physics issues to consider for computational stability/accuracy/efficiency:

Solving plasma and neutral equations on the same mesh
simplifies their strong coupling; this is helpful to ensure an
accurate simulation.

Wall particle recycling and ionization can result in long physical times to
reach equilibrium; this competes with the fast edge plasma transport.

To accommodate the dominant plasma transport, the
discretization is highly anisotropic.

For standard ∆t the plasma terms are well-conditioned enough to use an
easily scalable preconditioner such as Additive Schwarz.

However, neutral collisional diffusive transport is isotropic, and
very ill-conditioned on an anisotropic mesh.

Radial width
is much
greater than
poloidal

This physical knowledge implies that separate methods should be used to
precondition the plasma and neutral terms within the nonlinear solver.

Designing a Physics Preconditioner: FieldSplit

Results: FieldSplit Preconditioning
Initial FieldSplit structure - 2 separate fields preconditioned individually:

Field 1: 4 plasma terms solved with Additive Schwarz
Field 2: 1 neutral term solved with Algebraic Multigrid

Component preconditioners are added together
Coupling terms between fields are disregarded during preconditioning.

Solver NP=32 results
KSP its Time (sec)

ASM 1585 154
LU 7 25
FS 44 10

By handling the troublesome fields (neutral gases) separately we can use a
more scalable solver on the easier fields (plasma).
1D partitioning allows for the majority of fields (plasma) to be on their more
optimal domain.

Results: Scalability for More Complex Problems
FieldSplit performs well for larger time steps, so long as the plasma
terms can still be solved scalably.

Initially the neutral D velocity was computed with a simpler algebraic
model. Below are results with its inclusion in the nonlinear solve.

A 2D partitioning is preferred for this problem, which is first available at NP=8.

We also enjoy improved performance in the presence of a Neon
impurity and the 11 new individual fields added as a result.

Conclusions
FieldSplit overcomes a major
obstacle to parallel scalability for
an implicit coupled neutral/plasma
edge model.

This allows greatly reduced runtimes
when using multiple processors.
Little code manipulation is required.

Jacobian-free Newton-Krylov
within PETSc using FieldSplit
preconditioning provides flexibility
for optimizations such as

Redundant preconditioning on
comparatively small fields,
Variable Additive Schwarz overlap, and
Jacobian lagging both within and
across time steps.

Future Work
As different species (e.g., He and
C) are added and larger ∆t used,
how can FieldSplit be optimized?
The goal of the FACETS project is
Core-Edge-Wall coupling

How can this physics preconditioning
be applied in a multiphysics setting?
What techniques developed here can
be used in 3D edge codes, e.g.,
BOUT++?

Coupling terms can be retained
via the Schur complement.

Cost is greater than Additive FieldSplit.
While not needed so far, will this
coupling be useful in multiphysics
preconditioning?
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Conclusions 
 

PETSc can help you 
 
•  Easily construct a code to test your ideas 

–  tools to aid code construction, management, debugging 
 

•  Scale an existing code to large or distributed machines 
 

•  Incorporate more scalable or higher performance algorithms 
–  such as domain decomposition or multigrid 
 

•  Tune your code to new architectures 
–  using profiling tools and specialized implementations 
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How Can We Help? 
•  Provide documentation: 

–  http://www.mcs.anl.gov/petsc 
•  Quickly answer questions 
•  Assist with installation 
•  Guide large-scale flexible code development 
•  Answer email at petsc-maint@mcs.anl.gov 
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